

# Workshop on CO<sub>2</sub> Mineralization for ENERGY RELEVANT MINERAL EXTRACTION

July 13, 2021

## **Base assumptions**

- ► CO<sub>2</sub> price
  - Equation of costs:

[CO<sub>2</sub> Mineralization expenses] + [Metal Extraction]-[CO<sub>2</sub> credits] ≤ [Existing Process Cost/ton]

 We've estimated mineralization expenses to be \$15-20 with no improvement in yield

## CO<sub>2</sub> availability

- Point
- On-site DAC/DOC
- Pipelines where warranted
- Enhanced CO2 concentration mining doesn't need 100% purity



July 16, 2021

# **Known Unknowns beyond chemistry**

#### Ore Bodies

- Subterranean mapping
- Compositional analysis for trace metals
- Predicting ore reactivity and CO<sub>2</sub> capacity

### Deployment

- Measurements and protocols for extrapolation to scale
- LCA
- TEA
- Fate of impurities



# **Potential Metrics - Mining**

- Pretreatment of ore in situ or ex situ
  - >80% of deployed CO<sub>2</sub> should result in mineralization
  - Maximum extent of reaction should take place within 90 days for in-situ and 1 day for ex-situ
  - Energy of comminution should be reduced by 50%
- Incorporation of CO<sub>2</sub> mineralization into metal extraction or concentration steps.
  - Feed for this process could be extracted ore or existing mine tailings that contain recoverable energy relevant minerals
  - >90% of deployed CO<sub>2</sub> should result in mineralization
  - CO<sub>2</sub> reaction can take place during comminution, floatation, sorting and separation
  - IF CO<sub>2</sub> is generated during the process (for example reduction of siderite into Fe) it has to be either captured or offset within the overall process.
- Reaction of process tailings before land disposal
  - Feed for this process would be residuals from the active metal extraction steps.
  - >90% of deployed CO<sub>2</sub> should result in mineralization
  - Maximum extent of reaction should be achieved PRIOR to moving to tailings storage and not take more than 24 hours



# Potential metrics – *In situ* disposal and phytomining

#### PHYTOMINING

- Carbon negative LCA
- Annual or more frequent harvests of plants or sap
- Energy of comminution should be reduced by >90%
- Feed for this process could vary from unprocessed rock to existing mine tailings that contain recoverable energy relevant minerals
- Processed metal costs are lower than conventional mining, including valueadded products that result (e.g. biochar, carbon credits)



July 16, 2021 CO2 and Extraction